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Lieb-Robinson-type bounds are reported for a large class of classical Hamiltonian lattice models. By a
suitable rescaling of energy or time, such bounds can be constructed for interactions of arbitrarily long
range. The bound quantifies the dependence of the system’s dynamics on a perturbation of the initial state.
The effect of the perturbation is found to be effectively restricted to the interior of a causal region of
logarithmic shape, with only small, algebraically decaying effects in the exterior. A refined bound, sharper
than conventional Lieb-Robinson bounds, is required to correctly capture the shape of the causal region, as
confirmed by numerical results for classical long-range XY chains. We discuss the relevance of our findings
for the relaxation to equilibrium of long-range interacting lattice models.
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In many nonrelativistic lattice systems, and despite the
absence of Lorentz covariance, physical effects are mostly
restricted to a causal region, often in the shape of an
effective “light cone,” with only tiny effects leaking out to
the exterior. The technical tool, known as the Lieb-
Robinson bound [1,2], to quantify this statement in a
quantum mechanical context is an upper bound on the
norm of the commutator ½OAðtÞ; OBð0Þ�, where OAð0Þ and
OBð0Þ are operators supported on the subspaces of the
Hilbert space corresponding to nonoverlapping regions A
and B of the lattice. The importance of such a bound lies in
the fact that a multitude of physically relevant results can be
derived from it. Examples are bounds on the creation of
equal-time correlations [3], on the transmission of infor-
mation [4], and on the growth of entanglement [5], the
exponential spatial decay of correlations in the ground state
of a gapped system [6], or a Lieb-Schultz-Mattis theorem in
higher dimensions [7]. Experimental observations related
to Lieb-Robinson bounds have also been reported [8].
The original proof by Lieb and Robinson [1] requires

interactions of finite range. An extension to power-law-
decaying long-range interactions has been reported in
Refs. [3,6]. In this case the effective causal region is no
longer cone shaped, and the spatial propagation of physical
effects is not limited by a finite group velocity [9]. For
“strong long-range interactions,” i.e., when the interaction
potential decays proportionally to 1=rα with an exponent α
smaller than the lattice dimension d, the theorems in [3,6]
do not apply and no Lieb-Robinson-type results are
known. This fact nicely fits into the larger picture that,
for α ≤ d, the behavior of long-range interacting systems
often differs substantially from that of short-range inter-
acting systems. Examples of such differences include
nonequivalent equilibrium statistical ensembles and negative

response functions [10], or the occurrence of quasista-
tionary states whose lifetimes diverge with the system size
[11,12]. The latter is a dynamical phenomenon, and it has
been conjectured in [13] that some of its properties are
universal and in some way connected to Lieb-Robinson
bounds.
In most cases the peculiarities of long-range interacting

systems have been investigated in the framework of
classical Hamiltonian systems [12], but little is known
about Lieb-Robinson bounds in classical mechanics.
Exceptions are restricted to specific models with nearest-
neighbor interactions [14,15]. In the context of classical
Hamiltonian mechanics, a Lieb-Robinson bound is an
upper bound on the norm of the Poisson bracket
ffAð0Þ; gBðtÞg, where fAð0Þ and gBð0Þ are phase space
functions supported only on the subspaces of phase space
corresponding to the nonoverlapping regions A and B of the
lattice, respectively. The physical meaning of the norm of
this Poisson bracket becomes evident from an expression
put forward in [14],

jffAð0Þ; gBðtÞgj ≤ jA∥Bj∥∇f∥∞∥∇g∥∞uABðtÞ; ð1Þ
where ∥∇f∥∞ and ∥∇g∥∞ are the (bounded) maxima of all
the partial derivatives of f and g with respect to the phase
space coordinates, and

uABðtÞ ¼ 4max
i∈A
j∈B

����� ∂pjðtÞ
∂pið0Þ

����;
���� ∂qjðtÞ∂pið0Þ

����;
���� ∂pjðtÞ
∂qið0Þ

����;
���� ∂qjðtÞ∂qið0Þ

����
�
:

ð2Þ
The partial derivatives on the right-hand side of (2) quantify
the effect that a variation of the initial momentum or
position pið0Þ, qið0Þ at the lattice site i has on the
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time-evolved momentum or position pjðtÞ, qjðtÞ at the
lattice site j. A classical Lieb-Robinson bound is therefore
a measure for the spreading in time and space of an initial
perturbation, with potential applications to a broad range of
physical processes, including heat conduction, signal trans-
mission, transfer of energy, or the approach to equilibrium.
In this Letter we study the spreading in time and space of

initial perturbations in classical long-range interacting
lattice models. We have proved a Lieb-Robinson-type
result, providing an upper bound on uABðtÞ in (2) [and
hence on the Poisson bracket (1)] for a broad class of
classical long-range interacting lattice models in arbitrary
spatial dimension. Dipolar interactions in condensed matter
systems are the prime example of such long-range inter-
acting lattice systems [16], but many other examples exist
[17]. To avoid the rather technical notation of the general
result [18], we present the main result in this Letter for a
specific class of systems, namely classical XY models in d
spatial dimensions with pair interactions that decay like a
power law 1=ji − jjα with the (1-norm) distance ji − jj
between lattice sites i and j. The value of the exponent α
determines the range of the interaction, from mean-field-
type (distance-independent) interactions at α ¼ 0 to
nearest-neighbor couplings in the limit α → ∞.
Our study focuses on the influence of the interaction

range on the spreading of perturbations, and we find
pronounced quantitative and qualitative changes upon
variation of α. Different from systems with finite-range
interactions, the effect of an initial perturbation is found to
be effectively restricted to the interior of a causal region of
logarithmic shape, with algebraically small effects in the
exterior. Similar to the short-range case, such a bound can
be used to rigorously control finite-size effects in simu-
lations of lattice models, exclude information transmission
above a certain measurement resolution in the exterior of
the effective causal region, and much more. Our analytical
results are supplemented by numerical simulations of the
time evolution of a long-range interacting XY chain.
Besides confirming the validity of the bound, the numerical
results reveal that the refined version of our bound, sharper
than conventional Lieb-Robinson-type bounds, is required
in order to correctly capture the shape of the propaga-
tion front.
αXY model.—This model consists of classical XY spins

(or rotors) attached to the sites i ∈ Λ of a d-dimensional
hypercubic lattice Λ ⊂ Zd. The phase space of a single
rotor is Xi ¼ S1 ×R, allowing us to parametrize each rotor
by an angular variable qi ∈ S1 and by its angular momen-
tum pi ∈ R. On the phase spaceX ¼ X1 × � � � × XjΛj of the
total system, we define the Hamiltonian function

H ¼
X
i∈Λ

p2
i

2
−
JΛ
2

X
i;j∈Λ
i≠j

cosðqi − qjÞ
ji − jjα : ð3Þ

For α ≤ d, the second sum on the right-hand side of (3) is
superextensive, i.e., asymptotically for large lattices it
grows faster than linearly with the number jΛj of lattice
sites. Our proof of a Lieb-Robinson bound requires the
Hamiltonian to be extensive. We enforce extensivity also
for α ≤ d by allowing the coupling constant to depend
explicitly on the lattice,

JΛ ¼ J=sup
i∈Λ

X
j∈Λ∖fig

1

ji − jjα ; ð4Þ

where J is a real constant [19].
Classical long-range Lieb-Robinson bound.—Upper

bounds on the partial derivatives on the right-hand side
of (2) are given by

���� ∂qjðtÞ∂qið0Þ
���� ≤

P∞
n¼1

Uij
n t2n

ð2nÞ!
ji − jjα ≤

coshðvtÞ − 1

ji − jjα ≕Bqq
ij ðtÞ; ð5aÞ

���� ∂qjðtÞ∂pið0Þ
���� ≤

P∞
n¼1

Uij
n jtj2nþ1

ð2nþ1Þ!
ji − jjα ≤

sinh jvtj − jvtj
vji − jjα ≕Bqp

ij ðtÞ;

ð5bÞ
���� ∂pjðtÞ
∂qið0Þ

���� ≤
P∞

n¼1
Uij

n jtj2n−1
ð2n−1Þ!

ji − jjα ≤
v sinh jvtj
ji − jjα ≕Bpq

ij ðtÞ; ð5cÞ

���� ∂pjðtÞ
∂pið0Þ

���� ≤
P∞

n¼1
Uij

n t2n

ð2nÞ!
ji − jjα ≤

coshðvtÞ − 1

ji − jjα ≕Bpp
ij ðtÞ: ð5dÞ

The positive coefficients Uij
n are defined recursively by

Uij
nþ1 ¼

�
jJjUij

n þ jJΛjUii
n þ CijUmax

n for i ≠ j;
jJjUii

n þ CiiUmax
n for i ¼ j;

ð6Þ

with Uij
1 ¼ jJΛj and Uii

1 ¼ jJj, and we use the constants

Umax
n ¼ sup

i;j∈Λ
Uij

n ; v ¼ sup
i;j∈Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijJ þ JΛj þ Cij

p
; ð7Þ

Cij ¼
8<
:

jJΛj
P

k∈Λ∖fi;jg
ji−jjα

ji−kjαjj−kjα for i ≠ j;

jJΛj
P

k∈Λ∖fig
1

ji−kj2α for i ¼ j:
ð8Þ

The proof of the bounds combines techniques for
classical lattices with nearest-neighbor interactions [14]
with those used for proving Lieb-Robinson bounds for
long-range quantum systems [3,6], with the additional
refinement of allowing lattice-dependent coupling con-
stants. In the thermodynamic limit of infinite lattice size,
the quantity v in (7) remains finite and hence the bounds
remain meaningful [18].

PRL 112, 210601 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
30 MAY 2014

210601-2



All the bounds on the right-hand side of (5a)–(5d), and
therefore also the norm of the Poisson bracket (1), grow
exponentially for large times jtj, and decay as a power law
with the distance ji − jj. For some ϵ > 0, the effect of a
perturbation is therefore smaller than ϵ outside a region in
the (ji − jj, t)-plane specified, for large jtj, by

vjtj > lnð2ϵÞ þ α ln ji − jj: ð9Þ

This effective causal region, in which the effect of an initial
perturbation is non-negligible, has a logarithmic shape, and
differs in this respect from the linear (cone-shaped) region
derived in [14] for short-range interactions. As a conse-
quence, no finite group velocity limits the spreading of
perturbations in long-range interacting lattices, and super-
sonic propagation can occur. For a refined understanding of
the spatiotemporal behavior, we go beyond the usual Lieb-
Robinson-type estimates and consider the sharper bounds
in (5a)–(5d), where the coefficients Uij

n introduce an
additional spatial dependence. The functional form of these
bounds will be illustrated below, and we also show that
only the sharper bounds correctly capture the shape of the
propagation front.
The bounds (5a)–(5d) remain valid, with only minor

modifications of the parameters and prefactors, under broad
generalizations, including arbitrary graphs Λ, multidimen-
sional single-particle phase spaces Xi, many-particle inter-
actions, and very general forms of the interaction potential
[18]. In the remainder of this Letter we subject the bounds
(5a)–(5d) to a reality check, in the sense of testing their
tightness and whether the form of the propagation front
obtained numerically is faithfully reproduced.
Numerics.—We consider the αXY model (3) on a ring,

i.e., a one-dimensional chain of N ¼ jΛj sites with periodic
boundary conditions. The partial derivatives in (5a)–(5d)
are approximated by difference quotients,

∂pjðtÞ
∂qið0Þ ≈

~pjðtÞ − pjðtÞ
δqi

≕Qpq
ij ðtÞ; ð10Þ

and similarly for the other derivatives. Here, pjðtÞ ¼
pjðt; p1ð0Þ;…; pNð0Þ; q1ð0Þ;…; qNð0ÞÞ is the time-
evolved momentum obtained by starting from a certain
initial condition, and ~pjðtÞ ¼ pjðt; p1ð0Þ;…; pNð0Þ;
q1ð0Þ;…; qið0Þ þ δqi;…; qNð0ÞÞ is for a similar initial
condition, but with the ith initial position shifted by some
small δqi. The time-evolved momenta pj and ~pj are
obtained by numerically integrating Hamilton’s equations
using a sixth-order symplectic integrator [20]. The numeri-
cal results for Qpq

ij fluctuate strongly in time, obscuring the
overall trend of the spreading. To reduce the fluctuating
background, we compute the difference quotient (10) for 20
different (pairs of) initial conditions; details regarding the
choice of initial conditions are given in the Supplemental
Material [18]. Since our aim is to compare the numerical

results to the upper bounds (5a)–(5d), we select, for any
fixed time t and lattice sites i and j, the largest of the 20
Qpq

ij -values. The resulting maximum is denoted by Qpq
ij ,

and its time- and distance-dependence is shown in Fig. 1.
The plots illustrate the supersonic propagation of pertur-
bations in the presence of long-range interactions, as
expected from the inequality (9).
For all distances ji − jj and times t, the numerical results

are smaller than the bounds (5a)–(5d) and hence confirm
their validity. What is more, the results nicely agree with the
functional forms of the bounds, and only the prefactors are
overestimated. This observation suggests fitting the func-
tion cBpq

ij ðt=zÞ to the numerical data of Qpq
ij ðtÞ (and

similarly for the other derivatives), with c and z as fit
parameters (see left and center plots of Fig. 2). Although
the quality of this fit (having a residual sum of squares of
0.157) is acceptable, it can be improved by about two
orders of magnitude by using the fit function

~Bpq
ij ðtÞ ¼

~c
ji − jjα

X∞
n¼1

Uij
n jt=~zj2n−1
ð2n − 1Þ! ; ð11Þ

based on the sharper bound in (5c), with fit parameters ~c
and ~z. This fit is of excellent quality, indicating that the
distance-dependence of the coefficients Uij

n in (7) appreci-
ably modifies the shape of the propagation front and
correctly reproduces the actual spreading.
The sharper bounds in (5a)–(5d) inherit a system-size

dependence through the lattice dependence of JΛ and Cij in
the coefficients Uij

n . As a result, Uij
n (at fixed n and fixed

distance ji − jj) scales differently with N for the cases
0 ≤ α < d=2, d=2 < α < d, and α > d, respectively [18].
The switching from one regime to another at α ¼ d=2 and
α ¼ d nicely coincides with the different scaling regimes of
equilibration times observed in [13]. Additionally to the N-
dependence inherent to the bound, we find that, for α ≤ d,
the optimal values for the fit parameters ~c and ~z in (11)
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FIG. 1 (color online). Illustration of the spatiotemporal behav-
ior of perturbations. The contour plots show lnQpq

ij as a function
of the distance ji − jj and time t, for chains of length N ¼ 256.
Left: for the XY chain with nearest-neighbor interactions, the
effect of a perturbation is restricted to the interior of a cone-
shaped region. Right: for the αXY chain with α ¼ 1=2, the
contours spread faster than linearly in space, as expected from
(9), illustrating supersonic propagation.

PRL 112, 210601 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
30 MAY 2014

210601-3



show a strongN-dependence, well-captured by a power law
∝ Nð1−αÞ=2 for both parameters (Fig. 3 left and center). This
scaling seems to originate from the N-dependence of the
prefactor JΛ in (3) and (8), and is seen as an indication that
the bounds could be further improved. For α > d, in
contrast, the N-dependence of ~c and ~z is negligible.
Comparison to the quantum mechanical bound.— Lieb-

Robinson bounds were previously known for long-range
interacting quantum systems [3,6]. The functional form
of these bounds is cðevjtj − 1Þ=ð1þ ji − jjÞα, with a con-
stant c that depends on the observables considered.
Asymptotically for long times t and large distances
ji − jj, this functional form coincides with that of the
weaker form of all four classical bounds (5a)–(5d). For
small t, however, the bounds differ, not only between the
classical and the quantum case, but also between the four
derivatives bounded in the classical case. The short-time
behavior is linear in t for Bpq

ij in (5c), quadratic in t for Bqq
ij

and Bpp
ij in (5a) and (5d), and cubic in t for Bqp

ij in (5b). The
numerical results in Fig. 3 (right) confirm that the real
short-time dynamics of the αXY model is correctly cap-
tured by these different functional forms of the bounds. The
quantum mechanical bound, in contrast, increases linearly
for short times t, independently of the observables con-
sidered, although this may not reflect the actual behavior of
expectation values in all cases.
Conclusions.— We have reported Lieb-Robinson-type

inequalities, bounding the speed at which a perturbation
can travel across the lattice, for a broad class of long-range
interacting classical lattice models (including models on
arbitrary graphs Λ, with multidimensional single-particle
phase spaces Xi, many-particle interactions, and for rather

general forms of the interaction potential). By a suitable
rescaling, we extended the bounds to arbitrary non-negative
long-range exponents α, deep into the regime of strong
long-range interactions. The weaker bounds on the right-
hand side of (5a)–(5d) are direct analogs of the quantum
mechanical version of Lieb-Robinson bounds for long-
range interacting systems [3,6]. While our numerical results
for αXY chains confirm the validity of these bounds, they
reveal that the shape of the propagation front is not correctly
captured. Only the stronger versions of the bounds in
(5a)–(5d), with an additional distance-dependence introduced
through the coefficientsUij

n , reproduce the functional form of
the propagation front. These findings are in contrast to the
short-range case, where already the weaker “conventional”
form of the Lieb-Robinson bound yields the correct, cone-
shaped spatiotemporal behavior in agreement with the
numerical results.
Since our results apply to arbitrary classical observables,

potential applications cover a broad range of dynamical
phenomena in long-range interacting classical lattice mod-
els, from heat conduction to information transmission,
energy transfer, and the approach to equilibrium. In the
latter context, different finite-size scaling properties of
equilibration times had been observed in the regimes
0 ≤ α < d=2, d=2 < α < d, and α > d, respectively [13].
These three regimes agree precisely with the different
scaling regimes of the coefficients Cij that enter and reflect
in the bounds (5a)–(5d), providing a theoretical explanation
of the numerical observations.
Sharper Lieb-Robinson bounds, similar in spirit to

(5a)–(5d), can also be derived for quantum mechanical
lattice models with long-range interactions and will be
reported in a forthcoming paper.

FIG. 2 (color online). Numerical data and fits of the spreading
of perturbations in the αXY chain with α ¼ 1=2. The contour
plots show lnQpq

ij as a function of the distance ji − jj on a
logarithmic scale and time t on a linear scale. Left: numerical data
for a chain of length N ¼ 4096. Center: fit of the function
cBpq

ij ðt=zÞ [based on the weaker bound in (5c)] to the numerical
data of Qpq

ij ðtÞ, with fit parameters c ¼ 0.0064 and z ¼ 1.47,
yielding a residual sum of squares of 0.157. The contours of the
bound are approximately linear for large ji − jj and t, but this
does not correctly capture the actual behavior of the data. Right:
As in the center plot, but fitting the parameters ~c ¼ 21.5 and
~z ¼ 11.2 in the stronger bound (11) and yielding a residual sum
of squares as small as 0.0065.

FIG. 3 (color online). Left and center: system-size dependence
of the parameters ~c and ~z when fitting (11) to the numerical data
of αXY chains, using initial conditions with zero initial momenta.
The data for α ¼ 1=2 in the left plot are well described by the
power laws ~c ≈ 2.3Nb~c and ~z ≈ 1.2Nb~z with b~c ≈ b~z ≈ 0.27.
Right: b~c and b~z as functions of the exponent α. For α < 1 both
are well fitted by the linear function ð1 − αÞ=2. Right: short-time
behavior of the difference quotients Qqq

ij , Q
qp
ij , Q

pq
ij , and Qqq

ij ,
plotted on a log-log scale. Data are for α ¼ 1=2 and chain length
N ¼ 4096. The solid data curves display a linear, quadratic, or
cubic initial growth, in agreement with the corresponding bounds.
Dotted lines are fits of cBijðt=zÞ, with c and z as fitting
parameters.

PRL 112, 210601 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
30 MAY 2014

210601-4



R. B. acknowledges support by the Fundação de Amparo
à Pesquisa do Estado de São Paulo (FAPESP) and the
computational support of the Núcleo de Apoio a Óptica e
Fotônica (NAPOF-USP). M. K. acknowledges financial
support by the National Research Foundation of South
Africa via the Incentive Funding and the Competitive
Programme for Rated Researchers.

*kastner@sun.ac.za
[1] E. H. Lieb and D.W. Robinson, Commun. Math. Phys. 28,

251 (1972).
[2] B. Nachtergaele and R. Sims, in Entropy and the Quantum,

Contemporary Mathematics, Vol. 529, edited by R. Sims
and D. Ueltschi (American Mathematical Society, Provi-
dence, 2010); M. Kliesch, C. Gogolin, and J. Eisert,
arXiv:1306.0716.

[3] B. Nachtergaele, Y. Ogata, and R. Sims, J. Stat. Phys. 124, 1
(2006).

[4] S. Bravyi, M. B. Hastings, and F. Verstraete, Phys. Rev. Lett.
97, 050401 (2006).

[5] J. Eisert and T. J. Osborne, Phys. Rev. Lett. 97, 150404
(2006).

[6] M. B. Hastings and T. Koma, Commun. Math. Phys. 265,
781 (2006).

[7] M. B. Hastings, Phys. Rev. B 69, 104431 (2004).
[8] M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauß,

T. Fukuhara, C. Gross, I. Bloch, C. Kollath, and S. Kuhr,
Nature (London) 481, 484 (2012); T. Langen, R. Geiger,
M. Kuhnert, B. Rauer, and J. Schmiedmayer, Nat. Phys. 9,
640 (2013).

[9] J. Eisert, M. van den Worm, S. R. Manmana, and M.
Kastner, Phys. Rev. Lett. 111, 260401 (2013).

[10] D. Lynden-Bell and R. Wood, Mon. Not. R. Astron. Soc.
138, 495 (1968); W. Thirring, Z. Phys. 235, 339 (1970);
R. S. Ellis, K. Haven, and B. Turkington, J. Stat. Phys. 101,
999 (2000); H. Touchette, R. S. Ellis, and B. Turkington,
Physica A (Amsterdam) 340, 138 (2004); M. Kastner, Phys.
Rev. Lett. 104, 240403 (2010); J. Stat. Mech. (2010)
P07006.

[11] M. Antoni and S. Ruffo, Phys. Rev. E 52, 2361 (1995);
M. Kastner, Phys. Rev. Lett. 106, 130601 (2011); Central
Eur. J. Phys. 10, 637 (2012).

[12] A. Campa, T. Dauxois, and S. Ruffo, Phys. Rep. 480, 57
(2009).

[13] R. Bachelard and M. Kastner, Phys. Rev. Lett. 110, 170603
(2013).

[14] C. Marchioro, A. Pellegrinotti, M. Pulvirenti, and L. Triolo,
J. Stat. Phys. 19, 499 (1978).

[15] P. Buttà, E. Caglioti, S. Di Ruzza, and C. Marchioro, J. Stat.
Phys. 127, 313 (2007); H. Raz and R. Sims, J. Stat. Phys.
137, 79 (2009).

[16] G. Miloshevich, T. Dauxois, R. Khomeriki, and S. Ruffo,
Europhys. Lett. 104, 17011 (2013).

[17] R. Bachelard, T. Manos, P. de Buyl, F. Staniscia, F. S.
Cataliotti, G. D. Ninno, D. Fanelli, and N. Piovella, J. Stat.
Mech. (2010) P06009.

[18] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.112.210601, which
includes Ref. [21].

[19] Introducing such a normalization is actually a harmless
procedure and amounts to a rescaling of time. For a
“physical” Hamiltonian without such a rescaling, the
bounds we derived hold therefore in rescaled time tJΛ.
For finite systems, no rescaling is necessary.

[20] R. I. McLachlan and P. Atela, Nonlinearity 5, 541 (1992).
[21] P. Hauke and L. Tagliacozzo, Phys. Rev. Lett. 111, 207202

(2013).

PRL 112, 210601 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
30 MAY 2014

210601-5

http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/BF01645779
http://arXiv.org/abs/1306.0716
http://dx.doi.org/10.1007/s10955-006-9143-6
http://dx.doi.org/10.1007/s10955-006-9143-6
http://dx.doi.org/10.1103/PhysRevLett.97.050401
http://dx.doi.org/10.1103/PhysRevLett.97.050401
http://dx.doi.org/10.1103/PhysRevLett.97.150404
http://dx.doi.org/10.1103/PhysRevLett.97.150404
http://dx.doi.org/10.1007/s00220-006-0030-4
http://dx.doi.org/10.1007/s00220-006-0030-4
http://dx.doi.org/10.1103/PhysRevB.69.104431
http://dx.doi.org/10.1038/nature10748
http://dx.doi.org/10.1038/nphys2739
http://dx.doi.org/10.1038/nphys2739
http://dx.doi.org/10.1103/PhysRevLett.111.260401
http://dx.doi.org/10.1007/BF01403177
http://dx.doi.org/10.1023/A:1026446225804
http://dx.doi.org/10.1023/A:1026446225804
http://dx.doi.org/10.1016/j.physa.2004.03.088
http://dx.doi.org/10.1103/PhysRevLett.104.240403
http://dx.doi.org/10.1103/PhysRevLett.104.240403
http://dx.doi.org/10.1088/1742-5468/2010/07/P07006
http://dx.doi.org/10.1088/1742-5468/2010/07/P07006
http://dx.doi.org/10.1103/PhysRevE.52.2361
http://dx.doi.org/10.1103/PhysRevLett.106.130601
http://dx.doi.org/10.2478/s11534-011-0122-4
http://dx.doi.org/10.2478/s11534-011-0122-4
http://dx.doi.org/10.1016/j.physrep.2009.07.001
http://dx.doi.org/10.1016/j.physrep.2009.07.001
http://dx.doi.org/10.1103/PhysRevLett.110.170603
http://dx.doi.org/10.1103/PhysRevLett.110.170603
http://dx.doi.org/10.1007/BF01011695
http://dx.doi.org/10.1007/s10955-007-9278-0
http://dx.doi.org/10.1007/s10955-007-9278-0
http://dx.doi.org/10.1007/s10955-009-9839-5
http://dx.doi.org/10.1007/s10955-009-9839-5
http://dx.doi.org/10.1209/0295-5075/104/17011
http://dx.doi.org/10.1088/1742-5468/2010/06/P06009
http://dx.doi.org/10.1088/1742-5468/2010/06/P06009
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.210601
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.210601
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.210601
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.210601
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.210601
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.210601
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.210601
http://dx.doi.org/10.1088/0951-7715/5/2/011
http://dx.doi.org/10.1103/PhysRevLett.111.207202
http://dx.doi.org/10.1103/PhysRevLett.111.207202

